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radiat ion as an intense source of  X-rays enables the 
precise measurement  of  some of the critical exponents  
(/3 and 7). Careful  experiments  should be per formed 
to unders tand  the nature of  the transit ion discussed 
here and to gain a better insight into the ordering of  
intercalated atoms in other  dichalcogenide systems. 
We hope to accomplish a detailed study of  this transi- 
tion in the future. 
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Abstract 

A translation function is described which takes into account 
the full space-group symmetry. It can be easily computed 
by means of a standard Fourier program with modified 
coefficients and seems to be applicable if search-model 
orientation errors are less than 5 ° . This function has been 
tested on three structures. 

At present most medium-sized molecular crystal structures 
are solved almost automatically using direct methods. 
However, if the systematic application of direct methods 
fails, and if the geometry of the molecule under study is 
totally or partially known, there exists another possibility 
for solving the structure. It consists of first obtaining the 
proper orientation of the molecule using a rotation function. 
Occasionally, direct methods furnish an E map which 
already reveals a structural fragment properly oriented but 
misplaced with respect to a permissible origin for the unit 
cell. The oriented molecule is then positioned with respect 
to the crystal symmetry elements by means of the so-called 
translation functions, which work either in intensity space 
(Tollin & Cochran, 1964; Tollin, 1966; Crowther & Blow, 
1967; Karle, 1972; Langs, 1975; Beurskens, 1981; Harada, 
Lifchitz, Berthou & Jolles, 1981) or in vector space (Huber, 
1965; Braun, Hornstra & Leenhouts, 1969; Nordman & 
Schilling, 1970). 

0108-7673/86/050402-03501.50 

The translation function r(r) discussed in this paper is 
defined as the sum of the products of the observed and 
calculated cross-Patterson functions over the unit cell, for 
a given position r of the input molecule in the unit cell, i.e. 

r ( r ) =  V j" cross-Po(x) xcross-Pc(x) d3x 
un i t  cell  

! 2 t = v-ly~ lEo(h)[ IF~-(h, r)l 2. (1) 
h 

Crowther & Blow (1967) showed that 

]F 'o (h)l 2 = lEo (h)l 2 - Z ISj(h )l 2 , (2) 
J 

where Fo(h) is the observed structure factor and Sj(h) 
[hereafter: Sj (h) = Sj and Fo (h) = Fo ] is the molecular struc- 
ture factor computed with the atomic coordinates obtained 
after applying the rotation matrix Rj to the input oriented 
molecule, referred to a fixed local origin in the molecule. 

The Fourier coefficients of the calculated cross-Patterson 
expressed as a continuous function of the molecular posi- 
tion r can be evaluated after Crowther & Blow (1967) and 
Harada et al. (1981) by means of the following expression: 

IF ' (h ,  r)12 = Re 2 Y. Y~ SiS* exp [-i27rhtgj] 
j k>j 

x exp [--i2rrhkjr] (3) 

with tkj = tk -- t i, hkj = h(Rk - Rj) and tj = translation of the 
jth space-group symmetry operation. Introducing (2) and 
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Table 1. Crystal and test data for the three structures 

(I) (II) (III) 
Molecular formula C28H27NO 7 . H20 C24H3oO 9 C27H32N202 

Space group P212t21 P212121 Pccn 
a (~,) 10.239 8.605 18.0616 
b (/~) 11-352 15.669 15.5616 
e (/~) 22-952 17.117 16.9051 

Z 4 4 8 
Number observed 

reflections 
IF > 3tr(F)] 1836 766 2128 

Model size 
(atoms) 16 14 12 

Scattering 
fraction 0.36 0-36 0.36 

@ of refined atom 
coordinates (/~.) 0.007 0-021 0.016 

(3) into (1), z(r) takes the definitive form 

• (r)= Re (2/V) Y~ }-'. X {[Irol -Y  Is, l lsjs  
h j k > j  1 

x exp [--i27rhtkj]}exp [-i2whkjr]. (4) 

The best fits between observed and calculated cross- 
Patterson functions are always characterized by a 
maximum of the ¢(r) function. In general, there will 
be as many peaks in the z function as there are 
permissible origins for the unit cell. The molecular 
positioning is accomplished by adding the coordi- 
nates of the correct solution maximum to the input 
atomic coordinates. Expression (4) is computed by 
means of  a three-dimensional Fourier synthesis. 
However, for space groups with the origin having one 
degree of  freedom, only a section is required. Func- 
tion ¢(r) is equivalent to the Crowther-Blow Tl(t) 
function for crystal structures containing only one 
symmetry element. For  centrosymmetric space 
groups, the number of  Fourier terms in (4) can be 
reduced by a factor of  N / ( 2 N - 2 )  ( N  = number of 
symmetry operations). This modification is given in 
Appendix 1. 

To improve the resolution of  the T function, the 
[Fo(h)[ 2 are sharpened, and the molecular structure 
factors are derived using point atoms with thermal 
motion. 

Test calculations 

Several test calculations were done to study the evolution 
of the position and the height of a correct z peak towards 
misorientation errors. Three structures were selected: (I) 
colchiceine benzoate monohydrate (Molins, Rius, Solans, 
Miravitlles, Bladr-Font & Germain, 1985), (II) the natural 
product 'auropoline' (Rius, Camps, Coil & Miravitlles, 
1986), and (III) the synthetic compound 2-(p-methoxycar- 
bonylphenyl)-l, 3, 4, 4, 5,7,7-heptamethyl-2,4,5,6,7,8-hexa- 
hydroindeno[ 1,2- c]pyrrole-5-carbonitrile (Miravitlles, 
Rius, Camps, Coil & Mola, 1986). 

Relevant data for these structures are listed in Table 1. 
Three sets of atom coordinates at different refinement stages 
(Table 1) were used to build the three search models 
(Fig. 1). 

Fig. 1. The molecular conformations for (I) to (III) (H atoms 
omitted). Full circles define the atoms of the respective search 
models. 
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Table 2. Results of  the application of  the z function to three 
test structures 

to,: height of highest-ranked wrong peak; re: height of correct 
peak; to: height of correct peak (oriented molecule); s: shift of 
the correct • peak from the refined position. 

Model 
Rotated by 5 ° about the 

Oriented a axis b axis c axis 
Structure (I) 

~'w/% 0"90 0"88 0.92 0"82 
Rank number 

correct peak 1 1 1 1 
%/zo - -  0.94 0.84 0"86 
s (A) 0-12 0.10 0.14 0-14 

Structure (II) 
zw/% 1.20 1.45 1.31 1"30 
Rank number of 

correct peak 3 4 3 3 
%/to - -  0-87 0.91 0-90 
s (A) 0.09 0.16 0.18 0.15 

Structure (III) 
rw/7"~ 0.88 0.88 0.89 0-85 
Rank number of 

correct peak 1 1 1 1 
z~/ro - -  0.88 0"91 0"81 
s (/~) 0.09 0"09 0.09 0.10 

The highest (sin 0/A) value for the included reflections 
in the r synthesis depends on the size and the degree of 
misorientation of the search model, as well as on the number 
of grid points in the Fourier map. To determine its optimum 
value for a medium-sized model misoriented by 5 °, a num- 
ber of preliminary r syntheses (grid size--- 0.3/~) with the 
two (sin 0/A)m~x values 0"32 and 0.45/~,-~ were performed. 
Under the same conditions, the best results were always 
reached for (sin 0/A)max=0"45 A -1, i.e. better resolution 
and better peak-to-background ratio. Consequently, this 
was the value employed in the test calculations (Table 2). 

The data in Table 2 can be summarized as follows: 
(1) With increasing model misorientation, the absolute 

height of the correct peak decreases; e.g. for an error of 5 ° , 
an observed average ratio of 0.88 (4) is found. 

(2) Even for properly oriented models (scattering frac- 
tion = 0.36), the model position determined with the r syn- 
thesis can show errors of 0.10 A. 

(3) Misorientation errors of 5 ° can produce positional 
errors up to approximately 0.20/~,, so that the subsequent 
structure expansion should not be disturbed. 

Although three test structures are by no means sufficient 
to arrive at a general conclusion, these results seem to 
indicate that the r function can be applied successfully in 
those cases where the model is slightly misoriented (error 
<5°). 

APPENDIX I 

Simplification of the Fourier expansion of IF'(h, r)l 2 due 
to the presence of a symmetry center: 

I r o ( h ) l ~  = S/exp  x 

where N is the number of space-group symmetry 
operations. 

Since Sj = S* and S* = S t, for the j th  and j ' th  molecules 
related by a symmetry center, then 

N/2 

IF'c(h)12= IFol 2 - 2  Y Istl = 
J 

N/2 

= Re 2 Y. S* S* exp [-i4~-hrj]  
J 

N/2 N/2  

+ R e 4  ~ ~ S~S*rexp[ - i27rh ( rk+r j ) ]  
j k>j  

N/2 N/2 

+ R e 4  E ~ S jS*exp[ - i2~rh ( rk - r j ) ] .  
j k>j  

If all the molecular position vectors are expressed in 
terms of one only, and with the following abbreviations, 

h~t = h(R k + Rj)', h '~ j=h(Rk-Rj ) ;  

t~ t = tk + t j ;  tkj = tk --tj, 

it follows that 

N/2 
IF'(h, r)[ 2= Re 2 Y, S ' S *  exp [ - i4r rh t j ]  

t 
N/2 N/2  

x e x p [ - i 4 a r h t r ] + R e 4  ~ ~ S*Sk* 
j k> j  

x exp [-i27rht~j] exp [-i2zrh~jr] 

N/2 N/2 

+ R e 4  ~ Y. S tS*exp[- i2~-h t~ j  ] 
j k>t  

x exp [--i27rhkjr]. 
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